Visualizzazione dei risultati 1–12 di 953

Tornio

USED LATHE FOR SALE

Explore our collection of high-quality used lathes for sale. From precision turning to intricate machining, our selection offers affordable solutions for your metalworking needs. Browse trusted brands and reliable models to find the perfect used lathe to enhance your workshop's capabilities. Shop now for unbeatable value and performance!

FAQ

Discover answers to common lathe FAQs. Learn about lathe types, applications, and features. Explore tips for selecting the right lathe for your machining needs. Get insights on operation, maintenance, and safety precautions to maximize efficiency and ensure optimal performance in your metalworking projects.

Un tornio è una macchina utensile utilizzata per modellare, tagliare e tornire pezzi cilindrici. Ruota il pezzo sul proprio asse mentre vengono applicati vari utensili da taglio per rimuovere il materiale e creare le forme desiderate.

Il funzionamento di un tornio implica il fissaggio del pezzo nel mandrino o nella pinza, la selezione degli utensili da taglio appropriati, l'impostazione delle velocità di taglio e degli avanzamenti e l'utilizzo di volantini o controlli CNC per posizionare l'utensile da taglio rispetto al pezzo. Una formazione adeguata e il rispetto dei protocolli di sicurezza sono essenziali per il funzionamento sicuro del tornio.

Scegliere il tornio giusto per le vostre esigenze di lavorazione implica considerare diversi fattori per garantire che soddisfi le vostre specifiche esigenze e preferenze. Ecco una guida passo passo su come scegliere un tornio:

Definisci le tue esigenze di lavorazione:

Determina i tipi di operazioni di lavorazione che eseguirai con il tornio, come tornitura, sfacciatura, foratura, filettatura o rastremazione. Considera le dimensioni, il materiale e la complessità dei pezzi che lavorerai.
Considerare le dimensioni e il peso del pezzo:

Valuta le dimensioni e il peso dei pezzi che lavorerai per assicurarti che possano essere ospitati dal tornio. Considerare fattori quali l'oscillazione sul letto, la distanza tra i centri e il diametro e la lunghezza massimi del pezzo.
Scegli il tipo di tornio giusto:

Seleziona il tipo di tornio che meglio si adatta alle tue esigenze di lavorazione. I tipi di tornio comuni includono:
Torni a motore: macchine versatili adatte per operazioni di tornitura generiche.
Torni CNC: torni controllati da computer che offrono capacità di precisione e automazione per attività di lavorazione complesse.
Torni a torretta: torni multiutensile con torretta per cambi utensili rapidi, ideali per produzioni di grandi volumi.
Torni combinati: torni dotati di funzionalità aggiuntive come funzionalità di fresatura, foratura e rettifica.
Valutare precisione e accuratezza:

Valutare le specifiche di precisione e accuratezza del tornio, tra cui runout del mandrino, precisione di posizionamento e ripetibilità. Scegli un tornio con tolleranze strette e deviazione minima per risultati di lavorazione precisi.
Considera le opzioni di velocità e avanzamento:

Valuta la velocità e le capacità di avanzamento del tornio per assicurarti che soddisfino i tuoi requisiti di lavorazione. Considera fattori come la gamma di velocità del mandrino, le velocità di avanzamento e le capacità di filettatura per ottenere prestazioni ottimali.
Esamina le caratteristiche e le opzioni della macchina:

Cerca caratteristiche e opzioni aggiuntive che migliorino la versatilità e la funzionalità del tornio. Ciò può includere:
Letture digitali (DRO) per posizionamento e misurazione accurati.
Opzioni di utensili come portautensili a cambio rapido e portautensili indicizzabili.
Sistemi di raffreddamento per asportazione truciolo e dissipazione del calore.
Capacità di taglio del filo per produrre filetti di varie dimensioni e passi.
Valutare la struttura e la durabilità della macchina:

Valutare la struttura, i materiali e la qualità costruttiva del tornio per garantire durata e affidabilità a lungo termine. Cerca caratteristiche come la struttura in ghisa, letti rettificati di precisione e componenti robusti per un funzionamento stabile e privo di vibrazioni.
Considera il budget e il costo di proprietà:

Determina il tuo budget per l'acquisto e il funzionamento del tornio, tenendo conto del prezzo di acquisto iniziale, dei costi di manutenzione, delle spese per gli utensili e del consumo energetico. Considera il costo totale di proprietà (TCO) nel corso della vita della macchina per prendere una decisione informata.
Chiedi consigli e recensioni agli esperti:

Consulta esperti di lavorazione, operatori esperti e colleghi del settore per raccogliere approfondimenti e consigli sulla scelta del tornio giusto. Leggi recensioni, testimonianze e feedback degli utenti per conoscere le esperienze di altri utenti con modelli e marchi di tornio specifici.
Seguendo questi passaggi e considerando le vostre specifiche esigenze di lavorazione, preferenze e vincoli di budget, potete scegliere un tornio che soddisfi le vostre esigenze e vi aiuti a ottenere risultati di lavorazione di precisione in modo efficiente.

A lathe works by rotating a workpiece on its axis while various cutting tools are applied to remove material and shape the workpiece to the desired dimensions and surface finish. Here’s an overview of how a lathe operates:

Workpiece Mounting: The workpiece is mounted securely between the lathe’s chuck or collet and tailstock, ensuring it is centered and aligned with the lathe’s axis of rotation. The chuck or collet grips the workpiece firmly to prevent slippage during machining.

Tool Setup: Cutting tools such as turning tools, boring bars, drills, and threading tools are mounted on the lathe’s toolpost or turret. The tools are selected based on the machining operation to be performed and positioned at the appropriate angles relative to the workpiece.

Rotational Motion: The lathe’s spindle rotates the workpiece at a controlled speed determined by the operator or CNC program. The rotational motion of the workpiece allows the cutting tools to engage with the material and remove material from the workpiece’s surface.

Feed Motion: The cutting tools are fed into the rotating workpiece to remove material and create desired shapes and features. Feed motion can be controlled manually by the operator using handwheels or automatically using CNC programming.

Cutting Operations: As the cutting tools engage with the workpiece, they remove material by shearing, scraping, or shaving it away. Turning tools create cylindrical shapes by removing material along the workpiece’s length, while other tools perform operations such as facing, drilling, boring, threading, and grooving.

Finish Passes: After rough machining the workpiece to near-final dimensions, finish passes are performed using finer cutting tools or by adjusting the cutting parameters to achieve the desired surface finish and dimensional accuracy.

Coolant and Chip Removal: Coolant may be applied to the cutting area to lubricate the cutting tools, dissipate heat, and flush away chips and debris generated during machining. Chip conveyors or chip trays collect the chips for disposal or recycling.

Measuring and Inspection: Periodic measurements and inspections may be performed using precision measuring tools such as calipers, micrometers, and dial indicators to ensure dimensional accuracy and quality control.

Finishing Operations: Once machining is complete, secondary finishing operations such as deburring, polishing, and surface treatment may be performed to improve the workpiece’s appearance and functionality.

Workpiece Removal: After machining is finished, the workpiece is removed from the lathe and inspected for quality before being used in further assembly or manufacturing processes.

Overall, a lathe operates by rotating a workpiece and applying cutting tools to shape and finish it according to precise specifications, enabling the production of a wide range of components and parts used in various industries.

There are several reputable brands that manufacture lathes, offering a wide range of models and solutions to meet various machining needs. Some of the prominent lathe brands include:

Haas Automation: Haas is a well-known manufacturer of CNC machine tools, including CNC lathes. They offer a range of high-quality and reliable lathe models for precision machining applications.

Mazak Corporation: Mazak is a global leader in the manufacturing of CNC machine tools, including CNC turning centers. Their lathe lineup includes advanced models with innovative features for maximum productivity and accuracy.

DMG MORI: DMG MORI is a leading provider of CNC machine tools and automation solutions, offering a diverse range of lathe models for various industries and applications. Their lathes are known for their precision, reliability, and advanced technology.

Okuma Corporation: Okuma manufactures CNC machine tools, including CNC lathes, with a focus on quality, performance, and innovation. Their lathe lineup includes versatile models designed for high-precision turning operations.

Doosan Machine Tools: Doosan offers a comprehensive range of CNC machine tools, including CNC lathes, known for their robust construction, advanced features, and user-friendly operation.

Hardinge Inc.: Hardinge manufactures a wide variety of precision lathes, including CNC turning centers and manual lathes, designed for high-precision machining applications in industries such as aerospace, automotive, and medical.

Victor Machinery: Victor Machinery specializes in the manufacturing of CNC lathes and manual lathes, offering a range of models with advanced features and capabilities for efficient and accurate machining.

Hwacheon Machinery: Hwacheon produces CNC lathes and turning centers renowned for their reliability, precision, and cutting-edge technology. Their lathe lineup includes models suitable for various machining tasks and industries.

Kent USA: Kent USA offers a variety of precision lathes, including CNC turning centers and manual lathes, designed for versatility, performance, and durability.

Samsung Machine Tools: Samsung manufactures CNC lathes and turning centers known for their high-performance capabilities, advanced features, and user-friendly interfaces.

These are just a few examples of the many reputable lathe brands available in the market. When choosing a lathe, it’s essential to consider factors such as machine specifications, features, reliability, and after-sales support provided by the manufacturer or distributor.

The cost of an industrial robot can vary significantly depending on several factors, including the brand, model, size, payload capacity, reach, complexity, and additional features or accessories included. Generally, industrial robots can range in price from tens of thousands to several hundred thousand dollars. Here’s a rough breakdown of typical price ranges for industrial robots:

Small-Scale Robots (SCARA, Delta): Small-scale robots with lower payload capacities and simpler designs may range in price from $10,000 to $50,000, depending on the brand and features included.

Mid-Range Robots (Six-Axis, Cartesian): Mid-range industrial robots with moderate payload capacities and versatile capabilities typically range in price from $50,000 to $150,000.

High-End Robots (Heavy-Duty, High-Precision): High-end industrial robots with larger payload capacities, extended reach, high precision, and advanced features can cost anywhere from $150,000 to several hundred thousand dollars or more, depending on the complexity and customization required.

Collaborative Robots (Cobots): Collaborative robots, designed to work safely alongside humans, may have similar pricing ranges as traditional industrial robots, depending on their payload capacity, reach, and collaborative features.

It’s important to note that these are rough estimates, and the actual cost of an industrial robot can vary based on factors such as the specific application requirements, customization, integration with other systems, software licenses, training, warranties, and ongoing support services provided by the manufacturer or distributor.

When considering the cost of an industrial robot, it’s essential to evaluate the return on investment (ROI) based on factors such as increased productivity, labor savings, improved quality, reduced downtime, and other operational benefits that the robot can provide over its lifespan. Additionally, exploring financing options, leasing arrangements, or used/refurbished robot options may help make industrial robots more accessible for businesses with budget constraints.

Follow safety guidelines such as wearing appropriate personal protective equipment (PPE), securing workpieces properly, using guards and safety shields, keeping hands clear of rotating parts, and using caution when handling cutting tools and chips. Proper training and supervision are essential for safe lathe operation.

Regular maintenance tasks for lathes include cleaning, lubrication of moving parts, checking and adjusting alignment, inspecting and replacing worn parts, and calibrating machine settings. Preventive maintenance helps ensure optimal performance and extends the lifespan of the lathe.

Consider factors such as the size and weight of workpieces, desired machining operations, precision requirements, available workspace, and budget constraints when selecting a lathe. Consulting with a machining expert can help you choose the best lathe for your specific application.

I torni vengono utilizzati per una varietà di operazioni di lavorazione, tra cui tornitura, sfacciatura, foratura, alesatura, filettatura e rastremazione di pezzi cilindrici. Sono comunemente utilizzati nelle industrie manifatturiere per la produzione di componenti come alberi, bulloni, viti e raccordi.