Mostrando 1–12 de 1222 resultados

Centro de mecanizado

Espectáculo 9 12 18 24

USED MACHINING CENTER FOR SALE

Explore our extensive selection of high-performance machining centers designed to elevate your precision machining operations. From vertical and horizontal models to 5-axis and multitasking centers, our range offers advanced technology, reliability, and efficiency. Discover the perfect machining center to optimize your production and stay ahead in today's competitive market.

Preguntas más frecuentes

Unlock insights into machining centers with our FAQ. Learn about types, applications, and benefits of vertical, horizontal, and 5-axis centers. Get guidance on selecting the right machining center for your operations, operation, maintenance, and optimizing productivity for your machining needs.

Un centro de mecanizado es un tipo de máquina herramienta que se utiliza para el mecanizado de precisión de diversos materiales, como metal, plástico o madera. Por lo general, consta de una mesa de trabajo estacionaria y un husillo móvil que sostiene herramientas de corte, lo que permite operaciones de mecanizado multieje como fresado, taladrado y roscado en una sola configuración. Los centros de mecanizado pueden ser verticales, horizontales o multiejes, ofreciendo versatilidad y eficiencia en los procesos de fabricación.

El uso de un centro de mecanizado implica varios pasos para configurar, programar y operar la máquina de manera efectiva. A continuación se ofrece una descripción general de cómo utilizar un centro de mecanizado:

Configuración de la máquina:

Asegúrese de que el centro de mecanizado esté correctamente instalado y asegurado en su espacio de trabajo designado.
Verifique que los accesorios de sujeción, como prensas o abrazaderas, estén sujetos de forma segura a la mesa o al sistema de paletas de la máquina.
Instale herramientas de corte, portaherramientas y conjuntos de herramientas en el almacén o torreta de herramientas de la máquina.
Configuración de la pieza de trabajo:

Cargue la pieza de trabajo en la mesa o sistema de paleta de la máquina, asegurando una alineación adecuada y una sujeción segura para evitar el movimiento durante el mecanizado.
Utilice herramientas de medición de precisión, como indicadores de cuadrante o sistemas de sondeo, para verificar la posición y alineación de la pieza de trabajo con respecto al sistema de coordenadas de la máquina.
Configuración de herramientas:

Seleccionar las herramientas de corte y portaherramientas adecuados en función de las operaciones de mecanizado a realizar.
Cargue las herramientas seleccionadas en el almacén o torreta de herramientas de la máquina, asegurándose de que estén sujetas de forma segura y orientadas correctamente para los cambios de herramientas.
Programación:

Cree o cargue un programa CNC en el sistema de control de la máquina utilizando el software CAM (fabricación asistida por computadora).
Defina las operaciones de mecanizado, trayectorias de herramientas, parámetros de corte y cambios de herramientas necesarios para mecanizar la pieza de trabajo de acuerdo con las especificaciones deseadas.
Verifique el programa mediante los modos de simulación o ejecución en seco para garantizar trayectorias de herramienta correctas y evitar colisiones con la máquina o la pieza de trabajo.
Máquina de operación:

Inicie el centro de mecanizado e inicialice el programa CNC.
Supervise el proceso de mecanizado, observando el rendimiento de la herramienta de corte, la formación de viruta y la calidad de la pieza de trabajo.
Realice ajustes a los parámetros de corte, compensaciones de herramientas o parámetros de programa según sea necesario para optimizar el rendimiento del mecanizado y lograr los resultados deseados.
Cambios de herramientas:

Monitoree el desgaste y la vida útil de la herramienta durante las operaciones de mecanizado.
Utilice el cambiador automático de herramientas (ATC) de la máquina o los procedimientos de cambio manual de herramientas para reemplazar herramientas desgastadas o rotas por otras nuevas según sea necesario.
Inspección de piezas de trabajo:

Realice inspecciones periódicas de las características y dimensiones mecanizadas utilizando herramientas de medición de precisión como calibradores, micrómetros o CMM (máquina de medición de coordenadas).
Compare las dimensiones medidas con las tolerancias especificadas para garantizar la precisión y calidad de la pieza de trabajo.
Parada y Mantenimiento:

Una vez finalizado el mecanizado, apague el centro de mecanizado y limpie la máquina, el área de trabajo y las herramientas para eliminar virutas, refrigerante y residuos.
Realice tareas de mantenimiento de rutina, como lubricación, inspección de herramientas y calibración de máquinas, para garantizar un rendimiento y una longevidad óptimos.
Siguiendo estos pasos y adhiriéndose a los protocolos de seguridad, los operadores pueden utilizar eficazmente un centro de mecanizado para producir componentes mecanizados de alta calidad con precisión y eficiencia.

Choosing the right machining center involves considering several factors to ensure it meets your specific machining requirements and production needs. Here are some key considerations to help you select the best machining center for your application:

Types of Machining Operations:

Identify the specific machining operations you’ll be performing, such as milling, drilling, tapping, turning, or combination machining. Choose a machining center that offers the required capabilities and flexibility to accommodate your machining needs.
Workpiece Size and Material:

Consider the size, shape, and material of the workpieces you’ll be machining. Choose a machining center with a work envelope, table size, and weight capacity that can accommodate your largest workpieces while providing sufficient clearance for tool access.
Accuracy and Precision Requirements:

Evaluate the machining center’s accuracy and precision specifications, including positional accuracy, repeatability, and surface finish capabilities. Select a machine with tight tolerances and advanced features such as linear scales, thermal compensation, and high-resolution encoders for precise machining results.
Velocidad y potencia del husillo:

Assess the spindle speed range, horsepower, and torque capabilities of the machining center’s spindle. Ensure the machine can provide the required cutting speeds and power levels for your machining operations, including both roughing and finishing processes.
Tooling and Tool Magazine:

Consider the tooling options and tool magazine capacity offered by the machining center. Choose a machine with a sufficient number of tool positions and tool change capabilities to accommodate your tooling requirements and minimize downtime for tool changes.
Control System and Software Compatibility:

Evaluate the machining center’s control system and software compatibility with your existing CAD/CAM (Computer-Aided Design/Computer-Aided Manufacturing) software and programming preferences. Choose a machine with user-friendly controls, advanced features, and programming capabilities that streamline setup, operation, and programming tasks.
Automation and Integration:

Determine if you require automation features such as pallet changers, tool changers, or robotic loading/unloading systems to enhance productivity and efficiency. Choose a machining center with built-in automation options or compatibility with external automation solutions for seamless integration into your production environment.
Support and Service:

Research the manufacturer’s reputation for customer support, service availability, and aftermarket support. Choose a reputable manufacturer with a strong track record of reliability, responsive technical support, and readily available spare parts to minimize downtime and ensure long-term reliability.
Budget and Cost of Ownership:

Establish a budget for purchasing and operating the machining center, taking into account initial purchase price, installation costs, tooling expenses, maintenance requirements, and energy consumption. Consider the total cost of ownership (TCO) over the machine’s lifespan to make an informed decision.
By carefully evaluating these factors and selecting a machining center that aligns with your specific machining requirements, production goals, and budget constraints, you can invest in a machine that enhances your manufacturing capabilities and delivers a strong return on investment.

A machining center works by integrating multiple machining processes, such as milling, drilling, tapping, and turning, into a single machine tool platform. Here’s how a machining center operates:

Workpiece Setup: The workpiece is securely mounted on the machining center’s table or pallet system using workholding fixtures such as vises, clamps, or chuck jaws. Proper alignment and clamping ensure the workpiece remains stable during machining.

Tool Setup: Cutting tools, such as end mills, drills, taps, and turning tools, are loaded into the machining center’s tool magazine or tool changer. The machine may have multiple tool stations to accommodate various tools for different machining operations.

Program Setup: A CNC (Computer Numerical Control) program is created or loaded into the machining center’s control system using CAM (Computer-Aided Manufacturing) software. The program defines the sequence of machining operations, toolpaths, cutting parameters, and tool changes required to machine the workpiece according to the desired specifications.

Execution of Machining Operations:

Milling: The spindle rotates at high speeds, and the cutting tool removes material from the workpiece by rotating, plunging, or traversing along different axes. Milling operations can include facing, contouring, pocketing, and slotting.
Drilling and Tapping: The spindle rotates at lower speeds, and the cutting tool drills holes or taps threads into the workpiece. Drilling and tapping operations can be performed at various depths and hole diameters.
Turning (Optional): In a multitasking machining center, the spindle can be equipped with turning tools to perform turning operations such as cylindrical turning, facing, grooving, and threading.
Tool Changes: As the machining program progresses, the machine automatically selects and changes tools from the tool magazine or tool changer as needed to perform different machining operations.
Coolant and Chip Removal: Coolant is applied to the cutting area to lubricate the cutting tools, dissipate heat, and flush away chips and debris generated during machining. Chip conveyors or chip trays collect the chips for disposal or recycling.

Workpiece Inspection: Periodic inspections of the machined features and dimensions are performed using precision measuring tools such as calipers, micrometers, or CMM (Coordinate Measuring Machine). Measurements are compared to specified tolerances to ensure workpiece accuracy and quality.

Completion and Unloading: Once machining is complete, the finished workpiece is unloaded from the machining center’s table or pallet system. Secondary operations such as deburring, polishing, or assembly may be performed before the workpiece is ready for use or further processing.

By integrating multiple machining processes into a single machine tool platform, machining centers offer versatility, efficiency, and precision for a wide range of manufacturing applications in industries such as aerospace, automotive, medical, and mold making.

There are numerous reputable brands that manufacture machining centers, each offering a range of models with various configurations and capabilities. Some well-known machining center brands include:

Haas Automation: Haas is a leading manufacturer of CNC machine tools, including vertical and horizontal machining centers. They offer a wide range of machining centers known for their reliability, affordability, and user-friendly controls.

Mazak Corporation: Mazak is a global leader in the manufacturing of CNC machine tools, offering a diverse lineup of vertical, horizontal, and multi-tasking machining centers. Their machines are known for their precision, versatility, and advanced technology.

DMG MORI: DMG MORI is a prominent manufacturer of CNC machine tools and automation solutions, including vertical and horizontal machining centers. Their machining centers are renowned for their quality, performance, and innovative features.

Okuma Corporation: Okuma specializes in the production of CNC machine tools, including vertical and horizontal machining centers, with a focus on precision, reliability, and advanced technology. Their machines are used in various industries for high-performance machining applications.

Doosan Machine Tools: Doosan offers a wide range of vertical and horizontal machining centers known for their robust construction, high-speed machining capabilities, and user-friendly controls. Their machines are designed for precision and productivity in demanding machining environments.

Hurco Companies, Inc.: Hurco manufactures vertical machining centers with a focus on advanced CNC technology, user-friendly programming, and high-speed machining capabilities. Their machines are known for their reliability and versatility in various manufacturing applications.

Fanuc Corporation: Fanuc produces a range of vertical and horizontal machining centers equipped with their advanced CNC systems and automation solutions. Their machines are designed for high-speed, high-precision machining in industries such as aerospace, automotive, and medical.

Hardinge Inc.: Hardinge offers vertical and horizontal machining centers known for their precision, durability, and versatility. Their machines are used in various industries for precision machining applications requiring tight tolerances and complex geometries.

Haas Automation: Haas is a well-known manufacturer of CNC machine tools, including vertical and horizontal machining centers. They offer a wide range of machining centers known for their reliability, affordability, and user-friendly controls.

Yamazaki Mazak Corporation: Yamazaki Mazak is a global leader in the manufacturing of CNC machine tools, offering a diverse lineup of vertical, horizontal, and multi-tasking machining centers. Their machines are known for their precision, versatility, and advanced technology.

These are just a few examples of the many reputable machining center brands available in the market. When choosing a machining center, it’s essential to consider factors such as machine specifications, features, reliability, and after-sales support provided by the manufacturer or distributor.

The cost of a machining center can vary significantly depending on several factors, including the brand, model, size, configuration, features, and options included with the machine. Generally, machining centers range in price from tens of thousands to several million dollars. Here’s a rough breakdown of price ranges based on machine type:

Vertical Machining Centers (VMC):

Entry-level or benchtop VMCs: $20,000 to $100,000
Mid-range VMCs: $100,000 to $500,000
High-end or multi-axis VMCs: $500,000 to $1,000,000+
Horizontal Machining Centers (HMC):

Entry-level or compact HMCs: $50,000 to $200,000
Mid-range HMCs: $200,000 to $1,000,000
High-end or multi-pallet HMCs: $1,000,000 to $3,000,000+
5-Axis Machining Centers:

Entry-level or compact 5-axis machining centers: $100,000 to $500,000
Mid-range 5-axis machining centers: $500,000 to $1,500,000
High-end or multi-pallet 5-axis machining centers: $1,500,000 to $5,000,000+
It’s important to note that the prices mentioned above are approximate and can vary based on factors such as machine size, spindle configuration, tool magazine capacity, automation options, and additional accessories. Additionally, costs associated with installation, training, tooling, maintenance, and ongoing operational expenses should also be considered when budgeting for a machining center.

When purchasing a machining center, it’s advisable to request quotes from multiple suppliers, compare specifications and features, and consider factors such as machine reliability, service and support, and long-term return on investment (ROI) to make an informed decision that aligns with your machining needs and budget constraints.

Machining centers offer several advantages, including increased productivity, reduced setup times, higher accuracy and precision, improved part quality, versatility for performing various machining operations, and the ability to automate processes for greater efficiency.

Machining centers offer greater versatility, accuracy, and productivity compared to traditional machine tools. They can perform multiple machining operations in a single setup, often with automated tool changes and part handling, resulting in faster cycle times and improved efficiency.

Common challenges with machining centers include tool wear and breakage, programming errors, workpiece material selection and fixturing issues, toolpath optimization, coolant management, and maintaining tight tolerances and surface finish requirements.

Lathes are used for a variety of machining operations, including turning, facing, drilling, boring, threading, and tapering cylindrical workpieces. They are commonly used in manufacturing industries for producing components such as shafts, bolts, screws, and fittings.